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LETTER TO THE EDITOR 

Critical surface for a three-colour site percolation problem 
on the triangular lattice? 

I Kondor 
Institute for Theoretical Physics, Eotvos University, H 1088 Budapest, Puskin U 5/7, 
Hungary 

Received 17 June 1980, in final form 8 September 1980 

Abstract. A certain relationship between a recent conjecture by Wu and one by Klein et a1 
is established through considering a three-colour site percolation problem, where the three 
sublattices of a triangular lattice are populated with probability sl, s2 and s3, respectively. 
Both conjectures imply the same critical condition for various special cases of this 
three-colour model, including the threshold probability l/& for the honeycomb site 
problem. Existing numerical estimates provide strong evidence against this threshold value, 
hence against both conjectures. 

To fill the gaps left by missing exact results, a growing number of conjectures related to 
various features of the percolation problem have been introduced recently. One of 
these is a conjecture by Wu (1979) concerning the phase boundary of a q-state Potts 
model on the triangular lattice, where besides the usual two-body couplings one has also 
three-body couplings over every triangular face. From this Wu has been able to derive 
the threshold probability for the Kagomk bond percolation problem in the usual limit 
4 -+ 1. Now a generalised star-triangle transformation proposed by the present author 
(Kondor 1980) enables one to set up a whole cycle of transformations (much as in the 
Ising model (Syozi 1972)) among a number of combined (site-bond or two-site plus 
three-site bond) percolation problems. Starting from Wu's conjecture, it has thus been 
possible to derive the critical condition for all these systems. 

Another, completely different kind of conjecture is due to Klein et a1 (1978), who 
put forward arguments that, in the special case of the triangular site problem, the simple 
one-parameter renormalisation group transformation introduced earlier by Reynolds 
et a1 (1977) might in fact be exact, along with the value of the connectedness length 
exponent v = lnd3/ln f it implies. This value has later been challenged by the rival 
conjecture U = 5 due to den Nijs (1979). 

The purpose of the present Letter is twofold. Firstly, we show that, somewhat 
surprisingly, a certain relation does exist between the conjecture of Wu (1979) and that 
of Klein etal(1978), in that they have the same implications for the critical condition of 
some site problems, including the value l/h = 0.707 for the honeycomb site threshold. 
Secondly, we point out that existing numerical estimates, namely the series expansion 
estimates of Sykes etal(l976) and the more recent Monte Carlo results of Vicsek and 

4 

1. A preliminary version of this work has been presented at the Seventh International Seminar on Phase 
Transitions and Critical Phenomena, March 31-April 2, 1980, Budapest. 
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KertCsz (1980, private communication), provide very strong evidence against this 
threshold value, hence against both the conjectures mentioned above. 

To show up the link between the two conjectures, we introduce a coloured site 
problem on the triangular lattice. The function of colours will be to distinguish between 
the three sublattices shown in figure 1, whose sites are occupied with probability sl, s2, 
and s3, respectively. Clusters, connectedness, etc are defined regardless of the colours, 
so the problem considered here is completely different from the polychromatic 
percolation introduced by Zallen (1977). In spite of the similarity of figure 1 to the 
construction in a recent paper by Devoret (1980), the problem studied below is also 
totally different from his. 

Figure 1. Definition of the three-colour model. The vertices of the three sublattices (black, 
grey and white) of a triangular lattice are occupied with probability s,, i = 1 , 2 , 3 .  Clusters, 
connectedness and other percolation properties are defined regardless of the colours, so the 
coloured model is, in fact, a standard site percolation problem with a short-range inhomo- 
geneity. 

In particular instances the three-colour problem reduces to various simple site 
models. Namely, if 

SI= s2 = s3, o r s I = 0 , s I = l , s k ~ ( 0 , 1 ) , i , j , k = 1 , 2 , 3 ,  

we are back to a simple triangular site problem. If any of the s, is equal to zero, we have 
a honeycomb model with two different site probabilities on the remaining two sub- 
lattices. If any of the s, is equal to unity, we have a model which is easily seen to be 
equivalent to a site problem on the diced lattice, where all six-coordinated sites are 
present with probability one, while half the three-coordinated sites are occupied with 
probability s,, and the rest with sk. These special cases are illustrated in figure 2. 

Our purpose is now to find out the critical surface of the three-colour triangular 
model in figure 1. The parameter space of the model is the unit cube O s  si s 1, i = 
1 ,2 ,3 .  The critical surface is given by an equation of the form 

(1) 
where f is a symmetric function of its arguments due to the equivalence of colours. (The 
4 on the RHS is separated off for convenience.) It is also clear that, due to the particular 
geometry of the triangular lattice, f must be left unchanged by a reflection with respect 
to the unicolour point s1 = s2 = s3 = 3. To see this, one has essentially to repeat the 
reasoning which led Sykes and Essam (1964) to the threshold value s c = t  for the 
unicolour problem: following their line of thought, as presented in Essam (1972), one 
can easily show that in the three-colour problem the average number of clusters (per 

1 fh ,  s2,  s3) = z 

1 



Letter to the Editor L399 

Figure 2. Special cases of the three-colour model. ( a )  If the vertices of, say, the white 
sublattice are occupied with probability zero, the (broken) bonds conncting them to the rest 
of the lattice can be removed without affecting the connectivity on the other two sublattices. 
The result is the honeycomb lattice. If, in addition, another sublattice, say the black one, is 
populated with probability unity, we are left with a triangular model on the grey sublattiCe. 
( b )  If, say, the black sublattice is populated with probability unity, the (broken) bonds 
connecting the vertices of the other two sublattices with each other can be removed without 
changing the connectivity properties of the system. This leads to the diced lattice. If, in 
addition, another sublattice, say the white one, is populated with zero probability, we are 
back to the grey triangular lattice again. 

site) k(sl, s2, s3) satisfies the functional equation 

k(s1, s2, $3) = 4bl, s2, s3) + k(1- s1,1 -s2,1- s3) (2) 
where 

4 = $(SI  + $2 + s3) - (s1s2 + s1s3 + SZs3) + 2slS2s3, 

4 being a finite polynomial; the symmetry of f  (the surface along which k is singular) 
follows from 12). In the unicolour problem this is all one needs to locate the percolation 
threshold. In the three-colour problem equation (2) leaves a great deal of freedom. In 
any case, the permutation and reflection symmetry together imply that for sl + s, = 1 the 
critical condition is sk =+. This is in accord with what one expects intuitively and it 
means that the critical surface must contain the straight lines just mentioned. 

In order to guess the actual form of equation (l), we shall now make use of the 
conjecture by Wu (1979) taken in its general form, i.e. with two different three-site 
couplings over the up-pointing (down-pointing) triangles. From here the application of 
the generalised star-triangle transformation (Kondor 1980) and of duality takes one to 
the site-bond problems on the diced and the honeycomb lattice, respectively. Setting all 
bond probabilities to unity, one finds that the critical condition for the honeycomb site 
model in figure 2(a) is 

2SlS2 = 1 (3 1 
while for the diced problem in figure 2(b) 

2(1 - S 1 ) ( l  -s2)  = 1. (4) 

Equations (3) and (4) fix the intersections of the surfacef with the faces of the unit cube. 
On these grounds we conjecture the critical condition for the three-colour case: 

( 5 )  
1 f 
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The particular cases mentioned above are readily reproduced from ( 5 ) .  It may be 
worth comparing ( 5 )  with the plane of ‘mean probability’ s1 + s2 + s3 = 3, which would be 
the ‘critical surface’ if the particles were freely distributed over the entire lattice, 
regardless of the colours. This plane intersects the surface f along the straight lines 
st = 3, s, + sk = 1. A little reflection shows that the relative positions of these two 
surfaces should also be right; e.g. for 0 < sl, s2 < t and $< s3 < 1 the surface f must lie 
above the plane of mean probability, as it does. 

The qualitative features off are therefore certainly correct. On the other hand, we 
should clearly keep in mind that equation ( 5 )  is a conjecture built on another 
conjecture, basically on that of Wu (1979), so its status is, to say the least, rather shaky. 
The remarkable fact about ( 5 )  is that this same conjecture can be reached from a 
completely different direction, as we now proceed to show. 

Let us recall the simple one-parameter renormalisation group transformation 
proposed by Reynolds et a1 (1977). When treating the triangular site problem these 
authors chose the smallest possible triangular cell and applied the majority rule to 
obtain the cell probability 

p’ = 3p2 - 2p3. (6) 

In a later paper Klein et a1 (1978) argued that for the triangular lattice the simple 
renormalisation group mapping (6)  might, in fact, be exact. Though the situation is at 
present far from being clear, let us for a moment blindly follow Reynolds et a1 (1977) 
and transfer their prescription to the three-colour problem. On the scale of the 
renormalised system the colours are washed away, and the majority rule gives for the 
cell probability 

p’ = s:s2 + S1S3 + S2S3 - 2SlS2S3. 

The critical probability of the resulting unicolour system being p :  = 1, this is precisely 
what equation ( 5 )  says! 

Thus we have established a certain link between the conjectures of Wu (1979) and 
Klein et a1 (1978), respectively. The precise logical relationship is this: equations (3) 
and (4) are direct corollaries of Wu (1979) and are also special cases of equation ( 5 ) ,  
while the conjecture of Klein et a1 (1978) seems to imply the full equation ( 5 ) .  In 
particular, for the honeycomb site threshold (which can be obtained from (3) with 
s1 = s2 or from ( 5 )  with s1 = sa, s3 = 0) both these conjectures lead to sc = l/& = 0.707. 
This can now be compared with available data. Although the agreement with earlier 
numerical estimates (reviewed in Essam (1972)) may be regarded as fair, it seems as if 
the data favoured a slightly smaller value. At the given level of uncertainty (roughly one 
per cent) a final decision cannot yet be made, however. Later, more precise series 
expansion estimates by Sykes et ai (1976) yield sc= 0.698*0.003, while a very recent 
Monte Carlo work due to Vicsek and KertCsz (1980, private communication) leads to 
sc = 0.6973 f 0.001, Obviously, there is no way of reconciling these numbers with 
1/&. We are thus led to the unavoidable conclusion that neither the conjecture of Wu 
(1979) nor that of Klein et a1 (1978) can be right. 

I benefited from interactions with Professors A Coniglio, D S Gaunt, and T Geszty, and 
I thank Drs J KertCsz and T Vicsek for letting me know their results prior to publication. 
This work was partially supported by a contract from the Research Institute for 
Technical Physics of the Hungarian Academy of Sciences. 
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